
Nlist 1
ID: 785-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

Nlist
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 6807 bytes

Attack Category • Path spoofing or confusion problem

• Privilege Exploitation

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Management

Location • nlist.h

Description Privileged processes calling nlist() should beware of
the possibility of an unexpected file being substituted
as the operand.

The nlist() function returns symbol table information
for the specified symbol names, for the executable
file whose name is supplied as an argument.

Use of nlist() may be subject to attack if a check to
ensure that the right file is going to be examined
is followed by a use of nlist(); an attacker could
conceivably change what file the name refers to in
between the check and the use. Depending on how
the results returned by nlist() are going to be used,
this could be a problem.

APIs Function Name Comments

nlist

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

An attacker could potentially convince a privileged
program to examine the symbol table of an
executable to which the attacker would not normally

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html

Nlist 2
ID: 785-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

have direct access. If the attacker can gain access
to this symbol table information, this could help
the attacker to formulate an attack against that
executable.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

When nlist()
is used in a
privileged
program.

Operate at
a level of
privilege
appropriate to
the user so that
the system will
guard against
inappropriate
access to a
substituted file.

Effective when
feasible.

Generally
applicable.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the
underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

Generally
applicable.

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Limit the spread
of time (cycles)
between the

Does not
eliminate the
underlying
vulnerability

Nlist 3
ID: 785-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

check and use
of a resource.

but can help
make it more
difficult to
exploit.

Generally
applicable.

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int nlist(const char *file_name, struct nlist *nl);

Examples of Incorrect Code // assume we are running as suid-
root

struct nlist nl[100];
// populate nl with names of
symbols to be examined

nlist("someExecutable", nl);

// print symbol table information

Examples of Corrected Code // assume we are running as suid-
root

struct nlist nl[100];
// populate nl with names of
symbols to be examined

// change effective user and group
IDs to reflect user

nlist("someExecutable", nl);

// print symbol table information

Source References • ITS4 Source Code Vulnerability Scanning Tool
2

• http://seclab.cs.ucdavis.edu/projects/

vulnerabilities/scriv/ucd-ecs-95-09.pdf3

• http://www.phrack.org/show.php?p=60&a=6

Recommended Resources • AIX man page for nlist()5

• HP-UX man page for nlist()6

Discriminant Set Operating System • UNIX (All)

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

http://www.cigital.com/its4/
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-09.pdf
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-09.pdf
http://www.phrack.org/show.php?p=60&a=6
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf1/nlist.htm
http://docs.hp.com/en/B2355-90695/nlist.3C.html

Nlist 4
ID: 785-BSI | Version: 2 | Date: 5/16/08 2:39:28 PM

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

